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a b s t r a c t

Since hot-rolled strip laminar cooling (HSLC) process is a large-scale, nonlinear system, a distributed
model predictive control (DMPC) framework is proposed for computational reason and enhancing the
precision and flexibility of control system. The overall system is divided into several interconnected sub-
systems and each subsystem is controlled by local model predictive control (MPC). These local MPCs
cooperate with its neighbours through the scheme of neighbourhood optimization for the improvement
of global performance. The state space representation of each subsystem’s prediction model is designed
by finite volume method firstly, and then is linearized around the current operating point at each step to
overcome the computational obstacle of nonlinear model. Moreover, since the strip temperature is mea-
surable only at a few positions in water cooling section due to the difficult ambient conditions, an
Extended Kalman Filter (EKF) is used to estimate the transient temperature of strip. Both simulation
and experiment results prove the efficiency of the proposed method.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, customers require increasingly better quality for hot-
rolled strip products, such as automotive companies expect to gain
an advantage from thinner but still very strong types of steel sheet-
ing which makes their vehicles more efficient and more environ-
mentally compatible. In addition to the alloying elements, the
cooling section is crucial for the quality of products [1]. Hot-rolled
strip laminar cooling process (HSLC) is used to cool a strip from an
initial temperature of roughly 820–920 �C down to a coiling tem-
perature of roughly 400–680 �C, according to the steel grade and
geometry. The mechanical properties of the corresponding strip
are determined by the time–temperature-course (or cooling curve)
when strip is cooled down on the run-out table [1,2]. The precise
and highly flexible control of the cooling curve in the cooling sec-
tion is therefore extremely important.

Most of the control methods (e.g. Smith predictor control [3],
element tracking control [4], self-learning strategy [6] and adap-
tive control [5]) pursue the precision of coiling temperature and
care less about the evolution of strip temperature. In these meth-
ods, the control problem is simplified so greatly that only the coil-
ing temperature is controlled by the closed-loop part of the
controller. However, it is necessary to regulate the whole evolution

procedure of strip temperature if better properties of strip are
required. This is a nonlinear, large-scale, MIMO, parameter
distributed complicated system. Therefore, the problem is how to
control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

Model predictive control (MPC) is widely recognized as a prac-
tical control technology with high performance, where a control
action sequence is obtained by solving, at each sampling instant,
a finite horizon open-loop receding optimization problem and
the first control action is applied to the process [7]. An attractive
attribute of MPC technology is its ability to systematically account
for process constraints. It has been successfully applied to many
various linear [7–12], nonlinear [13–17] systems in the process
industries and is becoming more widespread [7,10]. For large-scale
and relatively fast systems, however, the on-line implementation
of centralized MPC is impractical due to its excessive on-line com-
putation demand. With the development of DCS, the field-bus
technology and the communication network, centralized MPC
has been gradually replaced by decentralized or distributed MPC
in large-scale systems [21,22] and [24]. DMPC accounts for the
interactions among subsystems. Each subsystem-based MPC in
DMPC, in addition to determining the optimal current response,
also generates a prediction of future subsystem behaviour. By suit-
ably leveraging this prediction of future subsystem behaviour, the
various subsystem-based MPCs can be integrated and therefore the
overall system performance is improved. Thus the DMPC is a good
method to control HSLC.
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Some DMPC formulations are available in the literatures
[18–25]. Among them, the methods described in [18,19] are
proposed for a set of decoupled subsystems, and the method
described in [18] is extended in [20] recently, which handles
systems with weakly interacting subsystem dynamics. For
large-scale linear time-invariant (LTI) systems, a DMPC scheme
is proposed in [21]. In the procedure of optimization of each
subsystem-based MPC in this method, the states of other sub-
systems are approximated to the prediction of previous instant.
To enhance the efficiency of DMPC solution, Li et al. developed
an iterative algorithm for DMPC based on Nash optimality for
large-scale LTI processes in [22]. The whole system will arrive
at Nash equilibrium if the convergent condition of the algorithm
is satisfied. Also, in [23], a DMPC method with guaranteed fea-
sibility properties is presented. This method allows the practi-
tioner to terminate the distributed MPC algorithm at the end
of the sampling interval, even if convergence is not attained.
However, as pointed out by the authors of [22–25], the perfor-
mance of the DMPC framework is, in most cases, different from
that of centralized MPC. In order to guarantee performance
improvement and the appropriate communication burden
among subsystems, an extended scheme based on a so called
‘‘neighbourhood optimization” is proposed in [24], in which
the optimization objective of each subsystem-based MPC consid-
ers not only the performance of the local subsystem, but also
those of its neighbours. The HSLC process is a nonlinear,
large-scale system and each subsystem is coupled with its
neighbours by states, so it is necessary to design a new DMPC
framework to optimize HSLC process. This DMPC framework
should be suitable for nonlinear system with fast computational
speed, appropriate communication burden and good global
performance.

In this work, each local MPC of the DMPC framework proposed
is formulated based on successive on-line linearization of nonlin-
ear model to overcome the computational obstacle caused by non-
linear model. The prediction model of each MPC is linearized
around the current operating point at each time instant. Neigh-
bourhood optimization is adopted in each local MPC to improve
the global performance of HSLC and lessen the communication
burden. Furthermore, since the strip temperature can only be mea-
sured at a few positions due to the hard ambient conditions, EKF is
employed to estimate the transient temperature of strip in the
water cooling section.

The contents are organized as follows. Section 2 describes the
HSLC process and the control problem. Section 3 presents proposed
control strategy of HSLC, which includes the modelling of subsys-
tems, the designing of EKF, the functions of predictor and the
development of local MPCs based on neighbourhood optimization
for subsystems, as well as the iterative algorithm for solving the
proposed DMPC. Both simulation and experiment results are pre-
sented in Section 4. Finally, a brief conclusion is drawn to summa-
rize the study and potential expansions are explained.

2. Laminar cooling of hot-rolled strip

2.1. Description

The HSLC process is illustrated in Fig. 1. Strips enter cooling sec-
tion at finishing rolling temperature (FT) of 820–920 �C, and are
coiled by coiler at coiling temperature (CT) of 400–680 �C after
being cooled in the water cooling section. The X-ray gauge is used
to measure the gauge of strip. Speed tachometers for measuring
coiling speed is mounted on the motors of the rollers and the
mandrel of the coiler. Two pyrometers are located at the exit of
finishing mill and before the pinch rol1 respectively. Strips are
6.30–13.20 mm in thickness and 200–1100 m in length. The
run-out table has 90 top headers and 90 bottom headers. The top
headers are of U-type for laminar cooling and the bottom headers
are of straight type for low pressure spray. These headers are di-
vided into 12 groups. The first nine groups are for the main cooling
section and the 1ast three groups are for the fine cooling section. In
this HSLC, the number of cooling water header groups and the
water flux of each header group are taken as control variables to
adjust the temperature distribution of the strip.

2.2. Thermodynamic model

Consider the whole HSLC process from the point of view of geo-
metrically distributed setting system (The limits of which are rep-
resented by the geometrical locations of FT and CT, as well as the
strip top and bottom sides), a two dimensional mathematical mod-
el for Cartesian coordinates is developed combining academic and
industrial research findings [26]. The model assumes that there is
no direction dependency for the heat conductivity k. There is no
heat transfer in traverse and rolling direction. The latent heat is
considered by using temperature-dependent thermal property
developed in [27] and the model is expressed as

_x ¼ �k
qcp

@2x
@z2 �

_l � @x
@l

ð1Þ

with the boundary conditions on its top and bottom surfaces

�k
@x
@z
¼ h � ðx� x1Þ ð2Þ

where the right hand side of (2) is h times (x � x1) and

h ¼ hw
x� xw

x� x1
þ r0e

x4 � x4
1

x� x1
ð3Þ

and x(z, l, t) strip temperature at position (z, l);

l, z length coordinate and thickness coordinate respectively;
q density of strip steel;
cp specific heat capacity;
k heat conductivity;
r0 Stefan–Boltzmann constant (5:67� 10�8 w=m2 K4);
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Fig. 1. Hot-rolled strip laminar cooling process.
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e emission coefficient ððx=1000Þ � ½0:125x=1000� 0:38� þ 1:1Þ;
x1 ambient temperature;
hw convection heat transfer coefficient (W/mm2 �C) on the sur-
face of strip.

The radiation boundary condition is only applicable out of the
water cooling section. The transfer coefficient hw is only applicable
in the water cooling section and is calculated as follows:

hw ¼ a
2186:7

106

x
x0

� �a v
v0

� �b F
F0

� �c

ð4Þ

where x0 = 1000 �C, v0 = 20 m/s, F0 ¼ 350 m3=ðm2 minÞ, a = 1.62,
b = �0.4, c = 1.41, v is the velocity of strip and F is the flux of cooling
water.

2.3. Problem statement

The technical targets of HSLC refer to CT and the temperature
drop curve of strip caused by cooling water. Contemplating the
overall system from the point of view of the geometrically distrib-
uted setting system, as shown in Fig. 2, we can transform the de-
sired temperature drop curve of strip into the geometrically
location-dependent temperature profile from finishing mill to coi-
ler. Here the temperature on desired cooling curve refers to strip’s
average temperature in thickness direction. Therefore, the control
objective becomes to adjust the average temperature of strip in
thickness direction to be consistent with the geometrically loca-
tion-dependent temperature profile. The manipulated variables
of system are the states (opening or closing) and the water fluxes
of every header groups.

2.3.1. Existing method
The existing method in industrial manufactory is open-loop and

closed-loop method. The open-loop part charges the main cooling
section and the closed-loop part charges the fine cooling section.
The water fluxes of all opening headers in main cooling section
are constant and are the same to each others, which are deter-
mined by expert experience according to the cooling rate in the
first section of cooling curve. The number of header groups opened
in the main cooling section Nho is used to adjust the strip temper-
ature at the exit of main cooling section, and is calculated online
according to the feed-forward signal of FT at each control period
as follows:

Nho ¼ int
xFT � xcm

CRm

� �

where xcm is the reference temperature at the exit of main cooling
section; xFT is the finishing rolling temperature; CRm is the reference
cooling rate in main cooling section. In the closed-loop part, a PI
controller is employed to control the water flux in fine cooling sec-
tion according to the feed-back measurement of CT.

However, in this method, some inaccurate or unreasonable
assumptions are applied additionally for the simplification of this

large-scale system (e.g. the cooling rate in main cooling section
is impossible to be constant if the water flux of every headers
keeps to be the same value), which makes the system less flexibil-
ity for various cooling curves and be less precise. On the other
hand, since the major disturbance (the fluctuation of xcm) does
not feed into PI controller in closed-loop part, it is also difficult
to achieve an accurate CT. Thus this control method is hard to sat-
isfy the increasing quality requirements of steel industry.

2.3.2. Why using DMPC framework
To obtain productions with better quality, a suitable optimiza-

tion method is required for making the average temperature of
strip in thickness direction consistent with the desired tempera-
ture profile at any position of the water cooling section. To realize
it, we should consider the water flux of each header group as an
individual manipulated variable rather than consider all of them
as one or two manipulated variables simply. That means the con-
trol method should be suitable for large-scale, nonlinear and rela-
tively fast MIMO system. Furthermore, this optimization method
should be able to account for the major measurable disturbance
of FT online for precision enhancing.

MPC is widely recognized as practical and well performed con-
trol technology [7] for process control, especially for MIMO system.
The measurable disturbance can also be taken into account
through the prediction model of MPC. Thus, MPC can be a good
selection for this system. As is shown in Fig. 2, the desired geomet-
rically location-dependent temperatures are selected at the loca-
tions l1; l2; . . . ; lN as the reference temperatures with the notation

r ¼ ½r1 r2 � � � rN �T ð5Þ

Here, l1; l2; . . . ; lN correspond to the locations of the exit of each
header group and the locations of the pyrometers used to measure
FT and CT. The optimization objective is to minimize

J ¼
XP

t¼1

kyðkþ tjkÞ � rðkþ tÞk2
Q þ

XM

h¼1

kDuðkþ h� 1jkÞk2
R ð6Þ

where y ¼ ½y1; . . . ; yN�
T
; ysðs ¼ 1; . . . ;NÞ is the average temperature of

strip at position ls; u:the manipulated variable vector, refers to the
future sequence of water flux; Du is the increment of manipulated
variable vector u; P is the prediction horizon and M is the control
horizon. The weighting matrices Q and R are positive definite and
have block-diagonal forms.

However, for this large-scale, nonlinear and relatively fast sys-
tem, the on-line implementation of centralized MPC is impractical
due to the large computation. To decrease the computational bur-
den and guarantee the performance of overall system at the same
time, a DMPC framework based on neighbourhood optimization
and successive linearization is therefore proposed for HSLC.

3. Control strategy of HSLC

Since the major obstacle of accurate online control of HSLC is
the large-scale, nonlinear characteristics, the DPMC framework is
adopted. The whole system is divided into N subsystems (The sth
subsystem ranges from ls�1 to ls (s ¼ 1;2; . . . ;N) as shown in
Fig. 2.), and each subsystem is controlled by a local MPC controller
as shown in Fig. 3. Since the strip temperature can only be mea-
sured at a few positions inside the cooling section due to the hard
ambient conditions, an EKF is employed to estimate the distribu-
tion of strip temperature. Each local MPC calculates the set-point
of PI controller based on the current strip temperature estimated
by EKF and the future states of its neighbours. Each PI controller
regulates water flux to be consistent with the set-point calculated
by local MPC. Since there are no manipulated variables in the
subsystems with closed header group, a predictor is substituted

o Position  l 

r 

1l  2l  CTl3l L L

Tem
perature 

Desired cooling curve

il

4r

ir

CTr1Nr −

1nl −

1r  
2r  

3r

Fig. 2. Desired temperature profile.
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for local MPC. The predictor estimates the future states of corre-
sponding subsystem and broadcasts the estimations to its neigh-
bours. In this way, the EKF, MPCs and predictors, as well as the
PI controllers work together through network information to con-
trol the HSLC.

3.1. State space model of subsystems

Since it is not easy for MPC to predict the future states using
model Eq. (1), the state space representation of model Eq. (1) for
each subsystem is deduced first in this subsection. Using 2D finite
volumes scheme [28], model Eq. (1) can be reduced into a finite
dimensional problem. In each subsystem s, denote the number of
volumes in l-direction by ns and z-direction by m as shown in
Fig. 4. Each volume, denoted by V, equals to DlDz:. Dl and Dz are
the length and thickness of each volume respectively. Denote the
temperature of the ith z-direction and the jth l-direction volume
by xs

i;j.
Let

x0
i;ns
¼ xFT ; i ¼ 1;2; . . . ;m: ð7Þ

xN
i;ns
¼ xN

i;ns�1; i ¼ 1;2; . . . ;m: ð8Þ

The energy balance Eq. (1) being applied to the top surface and
bottom surface volumes leads to

_xs
1;j ¼ �

ks
1;j

qs
1;jcps

1;j

1
Dz2 xs

2;j � xs
1;j � Dz

hs
1;j

ks
1;j
ðxs

1;j � x1Þ
 ! !

� 1
Dl
� vðxs

1;j � xs
1;j�1Þ ð9Þ

_xs
m;j ¼ �

ks
m;j

qs
m;jcps

m;j

1
Dz2 xs

m�1;j � xs
m;j � Dz

hs
m;j

ks
m;j

ðxs
m;j � x1Þ

 ! !

� 1
Dl
� vðxs

m;j � xs
m;j�1Þ ð10Þ

For the internal volumes, it comes

_xs
i;j ¼ �

1
Dz2

ks
i;j

qs
i;jcps

i;j

ðxs
iþ1;j � 2xs

i;j þ xs
i�1;jÞ �

1
Dl
� vðxs

i;j � xs
i;j�1Þ ð11Þ

where v ¼ _l is the coiling velocity; xs
i;j�1 ¼ xs�1

i;ns�1
when j = 1 and

xs
i;jþ1 ¼ xsþ1

i;1 when j = ns.
In industrial application, the measurements are available digi-

tally with a sampling time Dt. Thus the discrete-time version of
the subsystem is derived by approximating the derivatives using
simple Euler approximation. Since qs

i;j, ks
i;j and cps

i;j are temperature
dependent, define aðxs

i;jÞ ¼ �Dtks
i;j=ðDz2qs

i;jcps
i;jÞ; bðxs

i;jÞ ¼ Dt � as
i;j=k

s
i;j

and c ¼ Dt � v=Dl. Then the nonlinear state space representation
of subsystem s deduced from the previous Eqs. (7)–(11) can be ex-
pressed as

xsðkþ 1Þ ¼ f ðxsðkÞÞ � xsðkÞ þ gðxsðkÞÞ � usðkÞ þ D � xs�1
ns�1
ðkÞ s ¼ 1;2; . . . ;N

ysðkÞ ¼ C � xsðkÞ

(

ð12Þ
where

xs ¼ ½ðxs
1Þ

T ðxs
2Þ

T � � � ðxs
ns
ÞT�T;

xs
j ¼ ½xs

1;j xs
2;j � � � xs

m;j�
T
; ðj ¼ 1;2; . . . ; nsÞ;

ð13Þ

is the state vector of subsystem s, ys is the average temperature of
the last column volumes of subsystem s, us is the input of subsystem
s and is defined as follows:

us ¼ 2186:7� 10�6 � a � ðv=v0Þb � ðFs=F0Þc; s 2 CW

us ¼ 1; s 2 CA

(
ð14Þ

where CW is the set of subsystems in which strips are cooled by
water, and CA is the set of subsystems in which strips are cooled
major through radiation. f(xs(k)), g(xs(k)), D and C are coefficient
matrices of subsystem s, and are defined as follows:

f ðxsðkÞÞ ¼

U1ðxsðkÞÞ � K 0 � � � 0

0 U2ðxsðkÞÞ � K ..
.

..

. . .
.

0
0 � � � 0 Uns ðxsðkÞÞ � K

2
666664

3
777775

þ

ð1� cÞIm 0 � � � 0

cIm ð1� cÞIm
. .

. ..
.

..

. . .
. . .

.
0

0 � � � cIm ð1� cÞIm

2
666664

3
777775 ð15Þ

gðxsðkÞÞ ¼ w1ðxsðkÞÞT � � �wns
ðxsðkÞÞT

h iT
; ð16Þ

C ¼ m�1 � ½01�m�ðns�1Þ11�m�; ð17Þ
D ¼ ½cIm 0m�m�ðns�1Þ�T; ð18Þ

and

UjðxsÞ ¼

aðxs
1;jÞ � � � 0

..

. . .
. ..

.

0 � � � aðxs
m;jÞ

2
664

3
775;

wjðxsÞ ¼
hs

1;jðxs
1;jÞðxs

1;j � x1Þ � bðxs
1;jÞ

0ðm�2Þ�1

hs
m;jðxs

m;jÞðxs
m;j � x1Þ � bðxs

m;jÞ

2
64

3
75;

K ¼

�1 1 0 � � � 0

1 �2 1 . .
. ..

.

0 . .
. . .

. . .
.

0
..
. . .

.
1 �2 1

0 � � � 0 1 �1

2
66666664

3
77777775

; Im 2 Rm�m; ðj ¼ 1;2; . . . ;nsÞ;
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Fig. 3. The structure of DMPC framework for HSLC.
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hs
i;jðxs

i;jÞ ¼ ðxs
i;j=x0Þa; s 2 CW; ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; nsÞ

hs
i;jðxs

i;jÞ ¼ hairðxs
i;jÞ; s 2 CA

(

ð19Þ

It should be noticed that the notations gsð�Þ and us are different
between the subsystems which belong to CA and the subsystems
which belong to CW; see (14) and (19). Since the current states
of subsystems are not measurable inside the cooling section, an ob-
server is designed to estimate the current states of each subsystem
in the next subsection.

3.2. Design of Extended Kalman Filter

The nonlinear model of the overall system can be expressed as

xðkþ 1Þ ¼ FðxðkÞÞxðkÞ þ GðxðkÞÞuðkÞ þ �Dx0ðkÞ
�yðkÞ ¼ �CxðkÞ

(
ð20Þ

where x ¼ ½ðx1ÞTðx2ÞT . . . ðxNÞT�T and u ¼ ½u1u2 . . . uns �T; x0 is the dis-
tribution of FT in z-direction. �y is the output vector which includes
the measurements of CT on the top and bottom surfaces. The
expressions of FðxðkÞÞ;GðxðkÞÞ and �D can be deduced easily from
(12). Coefficient matrix �C is defined as

�C ¼ 01�ðN�1Þnsm 1 01�ðnsm�1Þ

01�ðN�1Þnsm 01�ðnsm�1Þ 1

" #
ð21Þ

This system is uniformly observable because each volume’s
temperature depends on its neighbours. Since the order of system
is inevitably high, the famous EKF is chosen to be more convenient
to design in our case. The estimating of the strip temperature dis-
tribution can be expressed as

x̂ðkþ 1Þ ¼ x̂ðkþ 1jkÞ þ Kkþ1ð�yðkþ 1Þ � �Cx̂ðkþ 1jkÞÞ ð22Þ

The feedback coefficient Kkþ1 is deduced by difference Riccati
equation [29]. This observer estimates the states of overall system
at each control period, and transmits them to all subsystems.

3.3. Predictor

Since there are no manipulated variables in subsystem
s 2 CA; a predictor is applied for estimating the future states
XsðkÞ where

XsðkÞ ¼ xsðkþ 1Þxsðkþ 2Þ � � � xsðkþ PÞ½ �T ð23Þ

In the predictor, the prediction model is (12), and the measur-
able disturbance FT is assumed to be a constant during the estimat-
ing of X1ðkÞ.

When finishing estimating XsðkÞ; the predictor sends the esti-
mation of XsðkÞ to the downstream neighbours of subsystem s.

3.4. Local MPC formulation

As for subsystem s 2 CW; the strip temperature is controlled by
a local MPC. The local MPC is formulated based on neighbourhood
optimization and successive linearization of prediction model. The
details of it are presented as follows.

Since the weighting matrices Q and R have block-diagonal
forms in (6), the global performance index can be decomposed in
terms of the local indices for each subsystem [30]

JsðkÞ ¼
XP

i¼1

krsðkþ iÞ � ŷsðkþ ijkÞk2
Q s

þ
XM

h¼1

kDusðkþ h� 1jkÞk2
Rs
; ðs ¼ 1;2; . . . ;NÞ ð24Þ

The local control decision is computed by solving local optimi-
zation problem Js(k) with local input/output variables and con-
straints. However, the optimal solution to the local optimization
problem collectively is not equal to the global optimal control deci-
sion of the whole system. To enhance the global control perfor-
mance, neighbourhood optimization is adopted.

Define the set of the subsystems whose states are affected by
the states of subsystem s as downstream neighbourhood of subsys-
tem s, and denote it by p�s, s R p�s.

Similarly, define the set of subsystems whose states affect the
states of subsystem s as upstream neighbourhood of subsystem s,
and denote it by p+s, s R pþs.

Since the future states of the downstream neighbours are af-
fected by the future inputs of subsystem s, the new performance
index for each subsystem can be improved by

min�JsðkÞ ¼
X

j2fp�s ;sg
JjðkÞ ð25Þ

Notice that the new performance index for the sth subsystem
�JsðkÞ is composed not only of cost function of subsystem s but also
of its downstream neighbours’, which is called by neighbourhood
optimization [24]. Cooperation between subsystems is achieved
by exchanging information between each subsystem and its neigh-
bours in a distributed structure via network communication and
by optimizing the local problem with the new performance index
(25).

It should be noticed that model Eq. (12) is a nonlinear model. If
the future evolution of each subsystem is predicted through it, the
minimization of a quadratic index, subject to the nonlinear HSLC
dynamic, would be a nonlinear optimization problem. This can
be computationally demanding, depending on the states and con-
straints. To overcome this problem, the prediction model is linear-
ized around the current operating point at each time step, and a
linear MPC is designed for the resulting linear system. The idea
of using time varying models traces back to the early 1970s in
the process control field although it has been properly formalized
only recently. Studies on linear parameter varying MPC schemes
can be found in [31–33,13,34]. Among them, the works in [33,13]
and [34] are the closest to our approach.

In this case, the following prediction model is used to approxi-
mate the nonlinear model Eq. (12) at time instant k

xsðiþ 1jkÞ ¼ AsðkÞ � xsðijkÞ þ BsðkÞ � usðijkÞ þ D � xs�1
ns�1
ðijkÞ

ysðijkÞ ¼ C � xsðijkÞ

(
s ¼ 1;2; . . . ;N

ð26Þ
where AsðkÞ ¼ f ðxsðkÞÞ and BsðkÞ ¼ gðxsðkÞÞ: The ðs� 1Þth subsystem
and the ðsþ 1Þth subsystem are the upstream neighbour and the
downstream neighbour of subsystem s respectively. Assuming that
xðkÞ is available, the local optimization problem for subsystem s at
the sampling time instant k becomes

min
DUsðkÞ

�JsðkÞ ¼
X

j2fs;sþ1g

XP

i¼1

krjðkþ iÞ � ŷjðkþ ijkÞk2
Q j

 

þ
XM

h¼1

kDujðkþ h� 1jkÞk2
Rj

!

s:t: xjðiþ 1jkÞ ¼ AjðkÞ � xjðijkÞ þ BjðkÞ � ujðijkÞ þ D � xj�1
nj�1
ðijkÞ;

j 2 fs; sþ 1g ð27Þ
us

min 6 usðkþ h� 1jkÞ 6 us
max; h ¼ 1; � � � ;M

Dus
min 6 Dusðkþ h� 1jkÞ 6 Dus

min; h ¼ 1; � � � ;M
xj

min 6 xjðkþ ijkÞ 6 xj
min; i ¼ 1; � � � ; P; j 2 fs; sþ 1g

where fus
min;u

s
maxg; fDus

min;Dus
maxg and fxj

min; x
j
maxgðj 2 fs; sþ 1gÞ are

boundaries of manipulated variables, increment of manipulated
variables and state vectors respectively, and
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DUsðkÞ ¼ ½DusðkÞDusðkþ 1Þ � � �DusðkþMÞ�T ð28Þ

Define that

Xs;ns ðkÞ ¼ ½xs
ns
ðkþ 1Þxs

ns
ðkþ 2Þ � � � xs

ns
ðkþ PÞ�T

UsðkÞ ¼ ½usðkÞusðkþ 1Þ � � �usðkþMÞ�T
ð29Þ

If sequences Xs�1;ns�1 ðkÞ and Usþ1ðkÞ are available to subsystem s;
problem (27) can be recast as a quadratic program (QP). Then opti-
mal control decision sequence DU�s ðkÞ of subsystem s can be com-
puted at time instant k by solving (27) for the current states. The
first sample of U�s ðkÞ ¼ usðk� 1ÞI1�M þ DU�s ðkÞ; is used to compute
the optimal water flux set-point of subsystem s according to (14).

We remark that model Eq. (12) is linearized around an operat-
ing point that, in general, it is not an equilibrium point. When eval-
uating the on-line computational burden of the proposed scheme,
one needs to account for the resources spent in computing the lin-
ear model Eq. (26) and translating (27) into a standard quadratic
programming (QP) problem. Nevertheless, for the proposed appli-
cation, complexity of problem (27) is reduced greatly comparing to
the nonlinear model based MPC.

3.5. Iterative algorithm

According to the neighbourhood optimization, the local optimal
control decision for each subsystem can be obtained by solving
problem (27) if the local optimal control decision of its down-
stream neighbours and the future optimal states of its upstream
neighbours are available, that is

DU�s ðkÞ ¼ arg min
DUsðkÞ

�JsðkÞjU�j ðkÞðj2N�i ;j–iÞ;X�hðkÞðh2Nþi ;h–iÞ

� �
ðs ¼ 1; � � � ;NÞ

ð30Þ

However, the local optimal control decision of its downstream
neighbours and the future optimal states of its upstream neigh-
bours are not available to subsystem s, and hence the estimations
of them are used. To get an accurate solution of problem (27), an
iterative algorithm is developed to seek the local optimal control
decision for each subsystem at each sampling period.

Distributed MPC algorithm:

Step 1. Initialization and communication: At the sampling instant
k; the EKF sends the current states of the system to the corre-
sponding subsystem. Each subsystem initializes the estimation
of local optimal control decision and transmits it to its
upstream neighbours. Set the iterative index l ¼ 0:

UðlÞs ðkÞ ¼ ÛsðkÞ; ðs ¼ 1;2; . . . ;NÞ

Each subsystem calculates the estimate of local state sequence
XðlÞs ðkÞ by (26) and transmits them to its downstream neighbours
through network.
Step 2. Subsystem optimization: Each subsystem which belongs
to CW solves its local optimization problem described in (27)
simultaneously to derive its control decision. That is

DUðlþ1Þ
s ðkÞ ¼ arg min

DUsðkÞ
�JsðkÞjUðlÞ

j
ðkÞðj2N�iÞ;X

ðlÞ
h
ðkÞðh2NþiÞ

� �
Uðlþ1Þ

s ðkÞ ¼ usðk� 1ÞI1�M þ DUðlþ1Þ
s ðkÞ; s 2 CW

Set the optimal solution of each subsystem belonging to CA

Uðlþ1Þ
s ðkÞ ¼ ½11 � � �1�T; s 2 CA:

Then, calculate the estimation of local state sequence XðlÞs ðkÞ by
(26).
Step 3. Checking and updating: Each subsystem checks if its ter-
minal iteration condition is satisfied, that is, for the given error
tolerance es 2 Rðs ¼ 1; . . . ;NÞ; if there exists

kUðlþ1Þ
s ðkÞ � UðlÞs ðkÞk 6 es ðs ¼ 1; � � � ;NÞ:

If all the terminal conditions are satisfied at iteration l�, then
stop the iteration, set the local optimal control decision for each
subsystem U�s ðkÞ ¼ Uðl

�Þ
s ðkÞ, and go to Step 4; otherwise, let

l ¼ lþ 1, each subsystem transmits the new information UðlÞs ðkÞ
to its upstream neighbours and transmits XðlÞs ðkÞ to its down-
stream neighbours, and go to Step 2;
Step 4. Assignment and implementation: Each subsystem com-
putes the control law

us� ðkÞ ¼ ½10 � � �0�U�s ðkÞ: ðs ¼ 1; � � � ;NÞ

and apply it to the corresponding subsystem.
Step 5. Reassigning the initial estimation: Set the initial estimate
of the local optimal control decision for the next sampling time

Ûsðkþ 1Þ ¼ U�s ðkÞ ðs ¼ 1; . . . ;NÞ;

Step 6. Receding horizon: Move horizon to the next sampling
time, that is k + 1 ? k, go to Step 1, and repeat the above steps.

The on-line optimization of HSLC, which is a large-scale nonlin-
ear system, is converted into several small-scale systems via dis-
tributed computation, thus computational complexity is
significantly reduced. In addition, information exchange among
neighbouring subsystems in a distributed structure via communi-
cation can improve control performance. Through this method,
the whole temperature evolution of the strip is controlled online,
which provides possibilities of producing many new types of steel
with high quality (e.g. the multi-phase steel). To prove the valida-
tion of the proposed strategy, both numerical simulations and
experiments on a HSLC experimental apparatus are implemented
in the next section.

4. Numerical experiment

To test the validation of the proposed method, low carbon C2
type steel is taken as an example. The parameters of C2 strip steel
are shown in Table 1.

Table 1
Thermal and physical properties of the strip.

Item Value Units

Thermal conductivity ks
i;j

56:43� ð0:0363� cðv � v0ÞÞ � xs
0;j

56:43� ð0:0363� cðv � v0ÞÞ � xs
m;i

�
W m�1 K�1

Thermal diffusivity aðxs
i;jÞ

8:65þ ð5:0� 8:65Þðxs
i;j � 400Þ=250 xs

i;j 2 ½400;650Þ
5:0þ ð2:75� 5:0Þðxs

i;j � 650Þ=50 xs
i;j 2 ½650;700Þ

2:75þ ð5:25� 2:75Þðxs
i;j � 700Þ=100 xs

i;j 2 ½700;800Þ
5:25þ 0:00225ðxs

i;j � 800Þ xs
i;j 2 ½800;1000�

8>>><
>>>:

�10�6 m2 s�1

Temperature of ambient 25 + 273.5 K
Temperature of cooling water 25 + 273.5 K

1432 Y. Zheng et al. / Journal of Process Control 19 (2009) 1427–1437



Author's personal copy

4.1. Validation of designed model

An experiment on full scale industrial plant is performed with a
strip of 3.51 mm in thickness to test the validation of the designed
model. In the experiment, the spatial meshing chosen to validate
the model is composed of 5 volumes of 0.7 mm in thickness and
30 volumes of 2.7 m in length, that is m ¼ 5, n ¼ 30. The water
fluxes in the main cooling section and in the fine cooling section
equal to 150 m3=ðs m2Þ and 75 m3=ðm2 sÞ respectively. The result-
ing prediction of CT and the measurement of CT are shown in Fig. 5.
The curve of predictive CT is very close to that of measurement.
The phenomenon that the predictive curve is smoother than the
measurement curve is caused by the second term in the right hand
side of model Eq. (1).

4.2. Convergence of EKF

The convergence of EKF is verified through a simulation here.
The initial states (the temperature of each volume) of process mod-
el and observer are shown in Fig. 6, where the initial states of the
observer are 30 �C higher than those of the process model. The
states of header groups are [1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1], where
one stands for opening and zero means closing. The coiling speed
v equals to 10:74 m s�1. The water fluxes in the main cooling sec-
tion and the fine cooling section are 200 m3=ðs m2Þ and
150 m3=ðs m2Þ respectively. FT is 870 �C. For spatial reason, the
temperatures of 2nd, 6th, 10th and 14th subsystems at layers from
top surface to central of strip are selected as examples to illustrate
the convergence of EKF. Fig. 7 shows that the temperatures ob-

served by EKF are convergent to temperatures estimated by the
process model.

4.3. Performance of DMPC comparing with centralized MPC

Since the main disturbance comes from FT, FT step signal is sent
into closed-loop system to compare the performance of the DMPC
framework proposed and that of centralized MPC. The thickness of
strip equals to 5 mm. Set the prediction horizon P ¼ 15, the control
horizon M ¼ 15 and the control sampling period be 0.37 s.

As shown in Fig. 8, the disturbances coming from FT can be
eliminated efficiently through DMPC. Figs. 8 and 9 show that the
performance and the manipulated variables of the closed-loop sys-
tem with DMPC are close to those of centralized MPC when itera-
tion l P 3:

The time cost of centralized MPC and DMPC framework pro-
posed, running in computers with a CPU of 1.8G and a memory
of 512M, is illustrated on Table 2. It can be seen that the time con-
sumed by DMPC proposed is quite less than that of centralized
MPC. The maximum time cost of DMPC with l ¼ 3 is only
0.1192s, which is satisfied with the demand of on-line
computation.

4.4. Advantages of the proposed DMPC framework comparing with the
existing method

Simulations are performed to illustrate the advantages of the
proposed DMPC framework comparing with the existing method
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in industrial manufactory. Here, the existing method refers to the
open-loop and closed-loop control introduced in Section 2. The
cooling curves of each strip-point with the existing method and

the proposed DMPC are shown in Figs. 10 and 11, respectively.
The existing method is able to control the CT well, while there is
a rough approximation of cooling curve for each strip-point
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achieved by the existing method. Typically, the temperatures of
strip at the middle of the water cooling section are far away from
that of the reference profile. On the contrary, the DMPC is able to
adjust the temperature of strip to be consistent with the reference
temperature profile at any position of the water cooling section.
And a better cooling curve of each strip-point is achieved through
it. That means this method is suitable for various cooling curves.
And hence the possibility of producing many new types of steel
with high quality (e.g. the multi-phase steel) is provided.

4.5. Experimental results

To verify the validation of the method proposed, an experimen-
tal result is presented in this subsection. In the experiment, as
shown in Fig. 12, the DMPC framework is run in six computers
(two for predictors and observer, the other four for local MPCs).
The six computers cooperated with each other to derive the opti-
mal inputs within the sampling period of 0.37 s, and then send
the optimal inputs into a PLC which charges the field PI controllers.
The run-out table experimental apparatus shown in Fig. 13, which
is a pilot apparatus, is used to test the performance of the DMPC
framework.

The good performance of the proposed DMPC is further verified
in Figs. 14–16, which show the FT profile, the output of each
closed-loop subsystem and the water flux of each header group

Table 2
Computational burdens of DMPC and centralized MPC.

Item Minimum
time (s)

Maximum
time (s)

Average
time (s)

Constructing model of each subsystem 0.0008 0.0012 0.0009
DMPC with iteration l = 1 0.0153 0.0484 0.0216
DMPC with iteration l = 2 0.0268 0.0690 0.0452
DMPC with iteration l = 3 0.0497 0.1194 0.0780
DMPC with iteration l = 5 0.0895 0.3665 0.1205
Constructing model of overall system 0.0626 0.1871 0.0890
Centralized MPC 0.6535 1.8915 0.9831

Remark: in Table 2, the time cost of constructing system model is included in the
time cost of DMPC and centralized MPC.
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in the experiment, respectively. This method can not only control
the CT but also optimize the whole evolution of strip temperature

online. The flexibility and precision of the control system are
enhanced.

10 20 30 40
860

880

900
y1

 ( °
C

)

10 20 30 40

840

845

y2
 ( °

C
)

10 20 30 40
805

810

y3
 ( °

C
)

10 20 30 40

775

780

y4
 ( °

C
)

10 20 30 40

740

745

y5
 ( °

C
)

10 20 30 40
706
708
710
712
714

y6
 ( °

C
)

10 20 30 40

675

680

y7
 ( °

C
)

10 20 30 40

675

680

y8
 ( °

C
)

10 20 30 40

675

680

y9
 ( °

C
)

10 20 30 40

674

676

y1
0 (

°C
)

10 20 30 40
662

664

666

y1
1 (

°C
)

10 20 30 40

652

654

y1
2 (

°C
)

10 20 30 40
640

642

644

y1
3 (

°C
)

10 20 30 40
638

640

642

y1
4 (

°C
)

Time(s)

 

 
Average temperature
Reference temperature

Fig. 15. Output of each closed-loop subsystem with DMPC framework.

10 20 30 40
-10

0

10

Fl
ux

 u
1

10 20 30 40
50

100

150

Fl
ux

 u
2

10 20 30 40
80

100

120

Fl
ux

 u
3

10 20 30 40

120

130

Fl
ux

 u
4

10 20 30 40
160

170

180

Fl
ux

 u
5

10 20 30 40

210

220

Fl
ux

 u
6

10 20 30 40
230

240

250

Fl
ux

 u
7

10 20 30 40
-10

0

10

Fl
ux

 u
8

10 20 30 40
-10

0

10

Fl
ux

 u
9

10 20 30 40
-10

0

10

Fl
ux

 u
10

10 20 30 40
70

80

90

Fl
ux

 u
11

10 20 30 40
70

80

90

Fl
ux

 u
12

10 20 30 40
70

80

90

Fl
ux

 u
13

10 20 30 40
-10

0

10

Fl
ux

 u
14

Time(s)

Fig. 16. Flux of each header group with DMPC framework.

1436 Y. Zheng et al. / Journal of Process Control 19 (2009) 1427–1437



Author's personal copy

5. Conclusions

In the present study, a DMPC framework is designed for the
HSLC process, in which the overall system is divided into several
interconnected subsystems and each subsystem is controlled by
a local MPC. First, the state space representation of each subsystem
is developed using finite volume method. Next, an observer based
on EKF is designed to reconstruct the current temperature distribu-
tion of the strip. Then, the EKF sends current states to the corre-
sponding local MPCs. In each local MPC, neighbourhood
optimization is adopted to enhance the global control perfor-
mance. Furthermore, to overcome the computational obstacle of
nonlinear model, the prediction model of each MPC is linearized
around the current operating point at each step. Through this
method the on-line optimization of strip cooling curve is realized
with a few computational burdens, both simulation and experi-
ment results proved the efficiency of the proposed method.
Through this method, the whole evolution procedure of strip tem-
perature is controlled online with a relatively high precision, which
provides possibilities of producing many new types of steel with
high quality (e.g. the multi-phase steel).

In HSLC, the aim is to obtain a uniform microstructure of the
strip. Therefore, it is more reasonable that the temperature errors
among different strip-points caused by FT are eliminated gradually
along the rolling direction. However, in this work, these errors are
eliminated mainly by the first several header groups, which is a
problem to be solved in further works.
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